Discontinuous Galerkin Approximation of the Maxwell Eigenproblem

نویسندگان

  • Annalisa Buffa
  • Ilaria Perugia
چکیده

A theoretical framework for the analysis of discontinuous Galerkin approximations of the Maxwell eigenproblem with discontinuous coefficients is presented. Necessary and sufficient conditions for a spurious-free approximation are established, and it is shown that, at least on conformal meshes, basically all the discontinuous Galerkin methods in the literature actually fit into this framework. Relations with the classical theory for conforming approximations are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconforming Maxwell Eigensolvers

Three Maxwell eigensolvers are discussed in this paper. Two of them use classical nonconforming finite element approximations, and the other is an interior penalty type discontinuous Galerkin method. A main feature of these solvers is that they are based on the formulation of the Maxwell eigenproblem on the space H0(curl; Ω) ∩ H(div; Ω). These solvers are free of spurious eigenmodes and they do...

متن کامل

Discontinuous Galerkin approximation of the Laplace eigenproblem

In this paper we analyse the problem of computing eigenvalues and eigenfunctions of the Laplace operator by means of discontinuous Galerkin (DG) methods. It results that several DG methods actually provide a spectrally correct approximation of the Laplace operator. We present here the convergence theory, which applies to a wide class of DG methods, as well as numerical tests demonstrating the t...

متن کامل

The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations

The local discontinuous Galerkin method for the numerical approximation of the time-harmonic Maxwell equations in a low-frequency regime is introduced and analyzed. Topologically nontrivial domains and heterogeneous media are considered, containing both conducting and insulating materials. The presented method involves discontinuous Galerkin discretizations of the curl-curl and grad-div operato...

متن کامل

Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations

In this paper, we extend to the time-harmonic Maxwell equations the p–version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a me...

متن کامل

Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods

This work is concerned with the numerical solution of the time-harmonic Maxwell equations discretized by discontinuous Galerkin methods on unstructured meshes. Our motivation for using a discontinuous Galerkin method is the enhanced flexibility compared to the conforming edge element method [12]: for instance, dealing with non-conforming meshes is straightforward and the choice of the local app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2006